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ABSTRACT

Objective: Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition char-
acterized by challenges in social communication and repetitive behaviors. This systematic 
review examines the application of artificial intelligence (AI) in diagnosing ASD, focusing on 
pediatric populations aged 0-18 years.

Materials and methods: A systematic review was conducted following Preferred Reporting 
Items for Systematic Reviews and Meta-Analyses 2020 guidelines. Inclusion criteria encom-
passed studies applying AI techniques for ASD diagnosis, primarily evaluated using metric-
like accuracy. Non-English articles and studies not focusing on diagnostic applications were 
excluded. The literature search covered PubMed, ScienceDirect, CENTRAL, ProQuest, Web of 
Science, and Google Scholar up to November 9, 2024. Bias assessment was performed using 
the Joanna Briggs Institute checklist for critical appraisal.

Results: The review included 25 studies. These studies explored AI-driven approaches that 
demonstrated high accuracy in classifying ASD using various data modalities, including visual 
(facial, home videos, eye-tracking), motor function, behavioral, microbiome, genetic, and neu-
roimaging data. Key findings highlight the efficacy of AI in analyzing complex datasets, iden-
tifying subtle ASD markers, and potentially enabling earlier intervention. The studies showed 
improved diagnostic accuracy, reduced assessment time, and enhanced predictive capabilities.

Conclusion: The integration of AI technologies in ASD diagnosis presents a promising fron-
tier for enhancing diagnostic accuracy, efficiency, and early detection. While these tools can 
increase accessibility to ASD screening in underserved areas, challenges related to data qual-
ity, privacy, ethics, and clinical integration remain. Future research should focus on applying 
diverse AI techniques to large populations for comparative analysis to develop more robust 
diagnostic models.

Keywords: Autism Spectrum Disorder, artificial intelligence, deep learning, diagnosis, machine 
learning, screening

INTRODUCTION

Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder (NDD) char-
acterized by persistent challenges in social communication and interaction, along with 
restricted or repetitive patterns of behavior, interests, or activities.1 The disorder manifests 
on a spectrum, with varying degrees of severity and a wide range of symptoms that can dif-
fer significantly from one individual to another.2 The global prevalence of ASD has increased 
over time, with current estimates suggesting it affects approximately 1 in 36 children in the 
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United States.3 In Asian countries, particularly Southeast Asia, 
the prevalence is around 6 cases per 1000 persons, with a 
notable male predominance, although these rates tend to be 
lower compared to Western countries.4

The Diagnostic and Statistical Manual of Mental Disorders, 
Fifth Edition (DSM-V), updated in 2013, provides the current 
criteria for ASD diagnosis, consolidating previously separate 
diagnoses under a single umbrella.1 However, diagnosing ASD 
remains challenging due to several factors.5,6 Unlike many other 
neurological disorders, ASD cannot be diagnosed through 
specific laboratory tests or imaging studies, complicating the 
diagnostic process. The wide range of symptoms and their 
varying severity levels make each case unique, further chal-
lenging accurate diagnosis. Additionally, ASD symptoms can 
overlap with, be masked by, or mimic other developmental 
or psychiatric disorders, increasing the risk of misdiagnosis or 
delayed identification.7 The fact that symptoms can change 
as a child develops adds another layer of complexity,8 requir-
ing ongoing assessment and potentially complicating early 
diagnosis.

Accurate diagnosis relies on careful, comprehensive behav-
ioral observations and assessments by trained healthcare 
professionals. This process often involves a detailed develop-
mental history, observation of the child’s behavior and inter-
actions, standardized assessment tools and questionnaires, 
and multidisciplinary evaluations (including psychologists, 
speech-language pathologists, occupational therapists, and 
other specialists).5,6 However, these methods are often sub-
jective, time-consuming, and may not be readily accessible 
to all populations. Early diagnosis and intervention are crucial 
for improving outcomes in individuals with ASD. However, the 
subtle nature of early signs and the variability in developmental 
trajectories complicate early detection.9,10

There has been a growing emphasis on improving diagnostic 
tools and methods for early identification and intervention as 
awareness of ASD continues to increase.11 In this regard, arti-
ficial intelligence (AI) and its subfield, machine learning (ML), 
have emerged as transformative technologies with the poten-
tial to significantly enhance the diagnostic process of ASD.12 
Artificial intelligence refers to computational systems designed 
to perform tasks that typically require human intelligence (such 
as pattern recognition and decision-making). Within the field 
of AI, ML focuses on developing algorithms that enable sys-
tems to make predictions and decisions based on data, with 
the ability to improve performance through experience. A more 
advanced subset of ML, deep learning (DL), uses complex neu-
ral networks to stimulate the brain’s processing mechanism, 
enabling more sophisticated analysis and interpretation of 
data.13 AI currently encompasses a variety of interconnected 
models and approaches, which can be complex to understand. 
Key terminology is provided in the Glossary (Supplementary 
Table 1), while Figure 1 offers an overview of the AI models.

Recent advancements in AI have led to its increasing adoption 
across various fields, including healthcare, with AI mimicking 
the biological networks of the human brain and encompassing 
a wide range of technologies capable of performing cognitive 
functions.14,15 Artificial intelligence models have shown promis-
ing results in reducing human error and improving diagnostic 
accuracy, particularly in the field of ASD research. Techniques 
such as support vector machines (SVMs), k-nearest neighbors 
(KNN), and DL have demonstrated good accuracy in diagnos-
ing ASD,16-18 while ML models can analyze complex datasets 
to identify key features associated with ASD, improving our 
understanding of the disorder.19,20 This technology has been 
applied to genetic research,21 neuroimaging,22 and behav-
ioral data analysis,23 offering potential breakthroughs in ASD 
diagnosis. However, challenges remain, particularly with the 

Figure 1. Relations among artificial intelligence, machine learning, and deep learning.
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reliance on behavioral observation data, which can be sub-
jective and prone to inconsistencies.23 To address these limita-
tions, integrating AI with advanced diagnostic tools, such as 
ML algorithms and DL models, could lead to more objective, 
efficient, and timely detection of ASD.

Despite these advancements, further research is needed to 
refine AI models and ensure their validity and reliability in clini-
cal settings, especially for behavioral assessments.15 Ongoing 
research is essential to refine these AI models, address the 
aforementioned challenges, and develop tools that are both 
clinically relevant and reliable. This study aims to critically 
evaluate the accuracy of ML algorithms in differentiating 
individuals with ASD from control groups and to explore how 
AI technologies can be incorporated into current diagnostic 
frameworks to enhance the precision and efficiency of ASD 
detection.

MATERIALS AND METHODS

Protocol and Eligibility Criteria
This systematic review followed the Preferred Reporting Items 
for Systematic Reviews and Meta-Analyses (PRISMA) guide-
lines24 to summarize research on AI’s application and its accu-
racy in diagnosing ASD. The review considered studies from 
clinical settings and computational experiments using various 
ASD datasets without race or geographical restrictions. Studies 
were considered for inclusion in the systematic review if they 
met the following criteria: (1) pediatric population (aged 0-18 
years old); (2) the use of AI for diagnosis purposes; (3) calcu-
lating the accuracy of AI-based tests compared to standard 
procedures; and (4) cross-sectional design or relevant original 
research. This approach ensured a comprehensive evaluation 
of AI’s role in the pediatric population of ASD while maintaining 
the focus on original, relevant, and accessible studies.

Information Sources and Search Strategy
The search process utilized five databases: PubMed, 
ScienceDirect, CENTRAL, ProQuest, Web of Science, with a 
cutoff date of November 9, 2024. To anticipate eligible gray 
literatures, searches on GoogleScholar were conducted as 
an addition, along with hand-searching relevant articles. The 
keywords for this study were the following: (“Autism Spectrum 
Disorder” OR “ASD” OR “Autism” OR “Autistic” AND “Artificial 
Intelligence” OR “AI” OR “Natural Language Processing” 
OR “Computerised” OR “Machine Learning” OR “Machine 
Intelligence” OR “Deep Learning”).

Selecting Studies and Data Collection
Studies collected from databases and manual searches were 
then compiled into Rayyan.ai for deleting duplicates. After 
removing duplicates, the remaining articles underwent a two-
stage screening process: first by titles and abstracts, then by 
full-text evaluation. Three independent reviewers (N.E., A.F.R., 
L.A.C.) screened the titles and abstracts to select appropri-
ate studies using Rayyan.ai. The authors did not use Rayyan’s 
automatic screening procedures but manual selections. Any 
discrepancies found would be discussed with the third author 
(P.S.). Article eligibility would be traced for full-text availability. 
The authors contacted the correspondence of eligible papers 
if full text could not be retrieved with regular steps. Articles 
might be excluded if the full-text articles were eventually not 

available. Two independent articles conducted the full-text 
screening and data collection process simultaneously. The 
decision to include studies strictly complied with predefined 
inclusion criteria, with a test run conducted to ensure con-
sistency. The entire process was meticulously documented, 
including reasons for excluding studies that did not meet the 
criteria. Any disagreements between reviewers were resolved 
by consulting a fourth reviewer (P.S.), ensuring a thorough and 
unbiased selection process throughout the systematic review.

Risk of Bias of Individual Sources of Evidence
In this systematic review of diagnostic studies, the quality 
assessment of the studies was conducted using the Joanna 
Briggs Institute (JBI) checklist for critical appraisal, tailored to 
each study’s design. The study designs evaluated included 22 
cross-sectional studies, two case–control studies, one cohort 
study. It was found that 10% were of high quality, 55% had mod-
erate quality, and about 35% were of low quality. All the litera-
ture included was rated as moderate quality.

RESULTS

Overview of Study Selection Process
Based on the PRISMA guidelines, the article inclusion process 
is illustrated in Figure 2. A total of 3572 articles were identi-
fied through database searches: 116 in PubMed, 499 in Scopus, 
443 in Cochrane, 1564 in Web of Science, and 950 in Google 
Scholar. After removing duplicates, 2241 articles were screened. 
The titles and abstracts of these articles were reviewed, and 
358 records were selected for full-text retrieval. In the second 
phase, 229 articles were excluded based on predefined exclu-
sion criteria. In the final phase, 104 articles were excluded: 101 
because AI was not the primary method used and 3 because 
of fewer than 10 ASD participants. In the end, 25 studies were 
included in this systematic review, with a total of 111 760 children 
aged 0-18 years old (9955 ASD and 101 805 typically develop-
ing [TD]).

Characteristics of Sources of Evidence
Table 1 summarizes the characteristics of the articles included 
in this study. This systematic review analyzed 25 studies pub-
lished in the last decades, focusing on AI methods for diag-
nosing ASD in the pediatric population. Artificial intelligence 
approaches fall into two main categories: traditional ML (e.g., 
SVM, Random Forests) and DL (e.g., convolutional neural net-
works [CNNs], long short-term memory [LSTM] networks). 
These methods were applied to various diagnostic tools such 
as behavioral assessments, neuroimaging data, genetic infor-
mation, visual data (facial, home videos, eye-tracking data), 
motor function data (gait analysis in 3D kinematic data), and 
microbiome data. The performance of these AI tools was pri-
marily evaluated using metric-like accuracy, as detailed in 
Table 2.

SYNTHESIS OF RESULTS

Modalities Used in Autism Spectrum Disorder Detection
The identification of ASD involves a comprehensive approach 
utilizing diverse diagnostic tools. These methods can be 
broadly categorized into two main groups: neuroimaging and 
multimodal (non-neuroimaging) assessment. Each of these 
modalities plays a crucial role in assessing various facets of 
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an individual’s neurological functioning, cognitive abilities, 
and behavioral patterns. Table 3 summarizes these two types 
of modalities, highlighting their use in the early detection 
of ASD.

DISCUSSION

The application of AI in ASD diagnosis has shown promising 
results across various studies, offering potential improvements 
in accuracy, efficiency, and early detection. This growing body 
of research demonstrates the capacity of AI, to process complex, 
multidimensional data associated with ASD, including visual, 
motor function, behavioral patterns, microbiome, genetic, and 
neuroimaging data. The integration of AI technologies in ASD 
diagnostics presents opportunities for more objective assess-
ments and the potential to identify subtle patterns that may be 
overlooked in traditional diagnostic approaches.

Table 3 provides an overview of key studies that apply AI (spe-
cifically ML algorithms) for classifying ASD. These studies high-
light several critical challenges in using AI for ASD diagnosis, 
such as managing imbalanced and multidimensional data, 
selecting relevant features for effective classification, and 
ensuring the reliable performance of evaluation metrics, such 
as accuracy. ML is particularly effective for processing complex 
datasets related to ASD, including genetic information, and can 
handle large amounts of diverse data. By analyzing different 
signs and characteristics, AI can help identify patterns associ-
ated with ASD, leading to better ML models for diagnosis and 
prediction.

This study reviews the latest research on how AI/ML/DL meth-
ods are applied to classify ASD. Based on these studies, we 
identify several critical issues that need attention:

1. Improving the classification of ASD using advanced ML 
techniques.30,31,44,46

2. Reducing the time required for diagnosing ASD while mini-
mizing human involvement.12,37,40,42,45,48

3. Identifying the specific features that differentiate ASD from 
other NDDs.25,47

4. Determining the critical factors that influence the develop-
ment of ASD.27,28,35,41,43

5. Reducing the number of features used in current ASD diag-
nostic methods without compromising evaluation metrics such 
as accuracy.25,29,32,39

ENHANCING PREDICTIVE OUTCOMES IN AUTISM 
SPECTRUM DISORDER DIAGNOSIS

One of the key advancements is improving “predictive out-
comes,” which means using AI to predict the likelihood of 
ASD even before typical symptoms appear. Researchers are 
developing faster and more accurate diagnostic methods by 
combining AI with tools like neuroimaging, facial recognition, 
and eye-tracking. These tools aim to classify ASD and predict 
its severity and development over time, providing a clearer 
picture of each child’s needs. Several studies have explored 
ways to enhance both the classification and early detection of 
ASD using technologies like ML, DL, eye-tracking, and facial 
recognition. Below is a summary of key studies focusing on 

Figure 2. The PRISMA flow diagram describing selecting study process.
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enhancing the diagnostic process and improving predictive 
outcomes.

Khullar et al introduced a handheld device powered by AI that 
uses ML algorithms, including LSTM, to diagnose ASD. The 
study found that the LSTM model achieved 100% accuracy 
in diagnosing ASD, using just 50 examples. The system per-
formed exceptionally well in two different testing scenarios: 
first, in training on a set of data, and second, when assessing 
20 ASD and 20 non-ASD children. The device’s ability to quickly 
and accurately diagnose ASD demonstrates its potential for 
improving early detection, particularly in areas with limited 
access to autism specialists. This AI-powered diagnostic tool 
offers significant benefits, such as determining the severity of 
ASD, being portable for use in various settings, and providing 
timely diagnosis, ultimately contributing to earlier intervention 
and better long-term outcomes for children.

Similarly, Alam et al30 focused on using facial image analysis 
to improve the accuracy of ASD diagnosis. The study aimed 
to determine whether aligning facial images could enhance 
the precision of ASD detection by reducing variations in head 
position and facial expressions. The researchers employed DL 
algorithms like ResNet50V2, achieving a prediction accuracy of 
93.93% and an area under the curve(AUC) of 96.33% after align-
ing facial images. While face alignment significantly improved 
accuracy, the researchers noted that it was insufficient to dra-
matically boost performance. They emphasized the need for 
a more comprehensive, data-centric approach to improve 
results further. Despite challenges such as poor image quality 

and inadequate validation of medical data, the study opened 
new avenues for using facial alignment to develop diagnostic 
tools for ASD. This approach may offer an additional layer of 
early predictive capability, allowing for better identification 
and early intervention in children showing subtle signs of ASD.

In another study, Alhakbani31 employed CNNs to analyze facial 
expressions and emotional engagement to improve under-
standing and support for children with ASD. The study found 
that CNN-based facial emotion recognition was more accu-
rate than other traditional ML models, such as random forest 
(RF) and SVM, in assessing engagement in both TD children 
and children with ASD. Using a 2-dimensional valence-arousal 
emotion model to classify engagement states allowed the 
system to accurately predict emotional responses, which is a 
critical aspect of social interaction in ASD. The study’s findings 
suggest that AI models can improve engagement detection in 
children with ASD, potentially leading to enhanced learning 
and social support systems and providing children with better 
development opportunities.

Meng et al33 utilized eye-tracking technology combined with 
ML algorithms to identify early signs of ASD in young chil-
dren. By analyzing how children with ASD and TD children 
responded to videos of cartoon characters and real people, 
the study found that eye movement patterns could differentiate 
between the two groups. Specifically, children with ASD were 
more likely to focus on cartoon characters rather than human 
faces, indicating a preference for non-social stimuli. The ML 
model used in the study achieved a diagnostic accuracy of 73%, 

Table 1. Critical Appraisal Summary Based on Joanna Briggs Institute Checklist

Author Study Design
Number of the Answer

Percentage (%) QualityYes No Unclear
Choi et al (2020) Cross-sectional 6  4 60 Moderate
Khullar et al (2021) Cross-sectional 5  5 50 Low
Megerian et al (2022) Cohort 8 1 1 80 High
Rahman et al (2020) Case–control 6 2 2 60 Moderate
Ucuz and Cicek (2020) Retrospective case–control 5 2 3 50 Low
Selvi et al (2023) Cross-sectional 6  4 60 Moderate
 Alam et al (2024) Cross-sectional 6  4 60 Moderate
Alhakbani (2024) Cross-sectional 4 1 5 40 Low
Awaji et al (2023) Cross-sectional 5  5 50 Low
Meng et al (2023) Cross-sectional 6  4 60 Moderate
Rabbi et al (2021) Cross-sectional 6  4 60 Moderate
Hasan et al (2017) Cross-sectional 7 1 2 70 Moderate
Lu and Perkowski (2021) Cross-sectional 6  4 60 Moderate
Pal and Rubini (2024) Cross-sectional 3  7 30 Low
Luongo et al (2024) Cross-sectional 7 1 2 70 Moderate
Wang and Fu (2023) Cross-sectional 4 1 5 40 Low
Rabie and Saleh (2023) Cross-sectional 2  8 20 Low
Olaguez-Gonzalez et al (2023) Cross-sectional 6 1 3 60 Moderate
Tang et al (2023) Cross-sectional 5 1 4 50 Low
Bi et al (2018) Cross-sectional 7 1 2 70 Moderate
Gao et al (2024) Cross-sectional 8  2 80 High
Xu et al (2019) Cross-sectional 6  4 60 Moderate
Manjur et al (2022) Cross-sectional 6 1 3 60 Moderate
Abdulhay et al (2020) Cross-sectional 8  2 80 High
Pham et al (2020) Cross-sectional 4 1 5 40 Low
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Table 2. Summary of Studies Using AI Technology in Autism Spectrum Disorder Assessments
Author Sample Size and Age Data Type AIgorithms and Accuracy Clinical Aim
Nominal Data
Choi et al, 202025 1269 children (708 

ASD, 177 PDD, 384 no 
diagnosis) 
aged 95.61 ± 62.80 
months

ADI-R and ADOS Multiclass decision forest 
94.48%

Predict subgroups of ASD 
based on the DSM-IV-TR 
criteria using ML (between 
ASD, PDD-NOS, and no 
diagnosis categories) and 
determine a minimum set 
of items that could reliably 
predict ASD diagnosis

Khullar et al, 202126 20 ASD (mean age 
8.98 years), 20 TD 
(mean age 9.70 years)

Binary dataset (based on 
DSM-V)

MLP 96.4%, CNN 100%, LSTM 
100%

Develop an advanced 
computer-based system for 
assisting clinicians as an 
alternative to traditional 
manual diagnosis methods

Megerian et al, 202212 425 children (125 ASD, 
300 TD) aged 18-72 
months

Three inputs (caregiver 
questionnaire, two short 
home videos, healthcare 
provider questionnaire)

DT (Sen 98.4%, Spe 78.9%, 
PPV 80.8%, NPV 98.3%)

Designed to assist primary 
care healthcare providers 
in diagnosing ASD

Rahman et al, 202027 96 138 children (1397 
ASD, 94741 TD) aged 
8-18 years

EMR (parental 
sociodemographic, 
medical histories, 
prescribed medication 
data)

Logistic regression, ANN, RF 
(average accuracy 95.62%)

Predict ASD early in life in a 
general population sample 
to enhance early detection 
of ASD risk in large 
populations of children to 
potentially allow for earlier 
interventions

Ucuz and Cicek, 
202028

136 ASD (mean age 
45.9 ± 11.1 months), 143 
TD (46.5 ± 11.3 months)

Prenatal, perinatal and 
developmental data

ANN (specifically MLP 
model) 88.0%

Develop an AI to 
differentiate between ASD 
and healthy individuals by 
identifying key risk factors 
associated with ASD

Selvi et al, 202329 182 children (113 ASD, 
60 TD) aged 6 months 
to 11 years

Indian Autism Parental 
Questionnaire

MLR 97.85%, SVM 97.14%, DT 
95.53%, KNN 97.02%, GNB 
96.34%

Designed a mobile 
application-based tool for 
early ASD screening, and 
be accessible to parents, 
caregivers, and teachers in 
lower middle-income 
settings

Observational Data
Alam et al, 202430 3014 children aged 

2-14 years (ASD and 
non-ASD)

Facial Images CNN (ResNet50V2 93.93%, 
Xception 92.14%, MobileNet 
84.64%)

Explore the effect of face 
alignment on improving the 
accuracy of ASD diagnosis 
using facial images

Alhakbani, 202431 1333 images ASD (2-14 
years) and 189 video 
recordings (12 TD 
aged 6-12 years)

Images and video CNNs 76%, SVM 75%, 
Decision Tree 67%, RF 64%

Develop an automatic 
engagement detection 
model for children with 
ASD using facial emotion 
recognition

Awaji et al, 202332 2940 facial images 
(1470 both ASD and 
TD) of children aged 
2-12 years

Autism Image Dataset 
(from Kaggle)

XGBoost (VGG16-ResNet101 
98.35%, ResNet101 97.4%, 
VGG16 98.66%), RF (VGG16-
ResNet101 97.8%, ResNet101 
98.25%, VGG16 98.8%)

Early detection using facial 
features and image 
analysis to overcome the 
limitations of manual 
diagnosis by creating an 
automated, AI-driven 
approach that could 
provide more objective, 
consistent, and efficient 
assessments of ASD 
symptoms.

(Continued)
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Author Sample Size and Age Data Type AIgorithms and Accuracy Clinical Aim
Meng et al, 202333 161 children (117 ASD, 

44 TD) aged 39.70 ± 
12.27 months

Eye-tracking data RF 73% Identifying distinct eye 
movement patterns in 
response to social stimuli 
(such as cartoon 
characters versus real 
people) to improve early 
screening processes for 
ASD

Rabbi et al, 202134 2940 face images 
(ASD and non-ASD) 
aged 2-8 years

Facial Images CNN 92.31%, MLP 71.66%, RF 
72.78%, GBM 75.23%, AB 
74.56%

Develop an accurate and 
efficient method for early 
stage detection to provide 
a faster and more 
accessible screening tool 
for ASD

Hasan et al, 201735 60 children (30 ASD 
aged 8.63 ± 2.16 years, 
30 TD aged 9.52 ± 1.96 
years)

3D kinematic gait 
features

ANN (Kinematic-Raw 88.3%, 
Kinematic-TMWU 90.0%, 
Kinematic-SWDA 91.7%)

Develop an automated 
classification system for 
gait abnormalities in 
children with ASD for 
effectively diagnosing ASD 
gait patterns

Lu and Perkowski, 
202136

1122 images (ASD and 
TD) aged 2-12 years

2D facial images of 
children (East Asian 
Dataset)

CNN (VGG16) 95% Develop an objective, 
inexpensive, and easily 
comprehensible screening 
solution for early detection 
of ASD in children using 
only facial images

Pal and Rubini, 202437 297 toddlers (163 ASD, 
134 non-ASD)

TASD Dataset Behavioral 
Traits and Features

BERT 88% Develop a reliable and 
efficient method for 
predicting behavioral traits 
in individuals with ASD 
through text-based data 
analysis

Luongo et al, 202438 10 ASD (mean age 4 
years), 10 TD (mean 
age 3.75 years)

Raw motion data from a 
drag and drop task on a 
tablet (motor trajectories)

ANN (2 features 90%, 4 
features 76%)

Objectively assess motor 
behaviors related to 
autism, by developing tools 
that can accurately classify 
motor skills

Laboratory Data
Wang and Fu, 202339 124 children (73 ASD, 

51 TD) aged 2-7 years
Metagenomic sequencing 
data of gut microbiota

RF (Moscow cohort 67%, 
Shenzhen cohort 97%, and 
combined 80%)

Provide a novel method for 
assessing ASD risk based 
on gut microbiome analysis 
by integrating data from 
multiple sources, cohorts, 
and ethnicities

Rabie and Saleh, 
202340

76 ASD (mean age 5.6 
years), 78 TD (mean 
age 5.7 years)

Blood tests EKNN (hybrid combining 
KNN, NB, and COA) 93%

Enhance accuracy and 
speed, potentially leading 
to better outcomes for 
children with ASD through 
earlier detection and 
intervention.

Olaguez-Gonzalez 
et al, 202341

223 children (125 ASD 
aged 2-7 years, 98 TD 
aged 48 months)

Microbiome composition SVM 90%, ANN 80%, RF 90% Identify specific microbial 
predictors that could aid in 
understanding the role of 
gut microbiota in ASD 
development, potentially 
leading to new diagnostic 
and therapeutic strategies

Table 2. Summary of Studies Using AI Technology in Autism Spectrum Disorder Assessments (Continued)

(Continued)
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Author Sample Size and Age Data Type AIgorithms and Accuracy Clinical Aim
Tang et al, 202342 254 toddlers (128 ASD, 

126 TD)
mRNA expression data 
(from Gene Expression 
Omnibus database)

LASSO regression 86% Identify specific genes from 
peripheral-blood samples 
that could serve as reliable 
indicators of ASD and 
create a predictive model 
for early detection and 
intervention.

Imaging Data
Bi et al, 201843 50 ASD (mean age 

13.34 ± 2.41 years), 42 
TD (13.05 ± 1.82 years)

rs-fMRI Elman NN 84.7%, DT 83.4%, 
SVM 77.3%

Enhancing ASD diagnosis 
accuracy and identifying 
key brain regions involved 
in the disorder

Gao et al, 202444 First site: 74 ASD 
(mean age 14.76 
years), 98 TD (mean 
age 15.75 years)
Second site: 47 ASD 
(mean age 13.71 
years), 73 TD (mean 
age 14.84 years)

rs-fMRI Multi-task transformer 
neural network (first site 
67.74%, second site 72.00%)

Improve early diagnosis 
and intervention strategies 
for ASD, to provide a more 
objective and efficient 
diagnostic tool for ASD that 
can potentially replace or 
complement current 
subjective and time-
consuming assessments

Xu et al, 201945 25 ASD (mean age 9.3 
± 1.4 years), 22 TD 
(mean age 9.5 ± 1.6 
years)

Hemodynamic 
fluctuations recorded by 
fNIRS

CGRNN (multilayer neural 
network combining CNN and 
GRU) 92.2%

Classify between ASD and 
TD children accurately for 
more efficient brain 
imaging and diagnosis of 
ASD in young children

Manjur et al, 202246 143 children (96 ASD 
aged 13.8 ± 4.8 years, 
47 TD aged 13.0 ± 4.2 
years)

ERG signals RF 86%, GBM 82%, DT 75% Enhance the early 
diagnosis of ASD by 
providing a more 
accessible and efficient 
screening tool compared to 
current diagnostic 
procedures that require 
multiple consultations with 
specialists.

Abdulhay et al, 202047 122 children (61 ASD 
and 61-neurotypical) 
aged 4-14 years

rs-EEG CWT, Feature Extraction, 
PCA, ANN (Overall accuracy 
95.90%)

Develop a computer-aided 
approach for accurately 
distinguishing between 
children with ASD and 
neurotypical children using 
resting-state EEG data.

Pham et al, 202048 77 children (40 ASD, 37 
TD) aged 4-13 years

EEG signals LDA 93.51%, QDA 85.71%, 
SVM 93.51-97.40%, KNN 
92.21%, SVMRBF 97.40%, PNN 
98.70%

Develop a non-invasive 
and cost-effective method 
to detect autism using EEG 
signals converted into 
images, which could help 
healthcare professionals 
make better decisions.

AB, AdaBoost (adaptive boosting); ADI-R, Autism Diagnostic Interview-Revised; ADOS, Autism Diagnostic Observation Schedule; ANN, artificial neural network; ASD, 
Autism Spectrum Disorder; BERT, Bidirectional Encoder Representations from Transformers; CGRNN, continuous graph recurrent neural network; CNN, convolutional 
neural network; COA, co-occurrence analysis (or component of analysis); CWT, continuous wavelet transform; DT, decision tree; EKNN, enhanced k-nearest 
neighbors; EMR, electronic medical record; ERG, electroretinography; fNIRS, functional near-infrared spectroscopy; GBM, gradient boosting machine; GNB, Gaussian 
Naive Bayes; GRUERG, gated recurrent unit with extended graph; Kinematic-SWDA, kinematic-structured wavelet domain analysis; Kinematic-TMWU, kinematic 
time-windowed units; KNN, k-nearest neighbors; LASSO, Least Absolute Shrinkage and Selection Operator; LDA, linear discriminant analysis; LSTM, long short-term 
memory; ML, machine learning; MLP, multilayer perceptron; MLR, multinomial logistic regression; NB, Naive Bayes; NN, neural network; NPV, negative predictive 
value; PCA, principal component analysis;PDD, pervasive developmental disorder; PDD-NOS, pervasive developmental disorder-not otherwise specified; PNN, 
probabilistic neural network; PPV, positive predictive value; QDA, quadratic discriminant analysis; RF, random forest; rs-EEG, resting-state electroencephalography; 
rs-fMRI, resting-state functional magnetic resonance imaging; Sen, sensitivity; Spe, specificity; SVM, support vector machine; SVMRBF, support vector machine with 
Radial Basis Function Kernel; TASD, text-based early Autism Spectrum Disorder detection dataset for toddlers; TD, typically developing; XGBoost, extreme gradient 
boosting.

Table 2. Summary of Studies Using AI Technology in Autism Spectrum Disorder Assessments (Continued)
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demonstrating the potential of eye-tracking as a tool for early 
detection of ASD. The study also emphasized the importance of 
developmental age and suggested that future research should 
consider these factors to refine predictive outcomes.

Manjur et al46 explored electroretinography (ERG) combined 
with ML to detect ASD. The study analyzed ERG signals from 
children with ASD and control subjects and found that spec-
tral analysis of ERG waveforms offered better classification 
accuracy than traditional time-domain features. Using an ML 
approach with automatic feature selection, the researchers 
achieved an accuracy of 86% and a sensitivity of 98%, demon-
strating the potential of ERG as a tool for ASD diagnosis. This 
method could offer a faster and more accessible diagnostic 
process than traditional methods. The study also suggested 
that combining ERG with other physiological measures, such as 
electrodermal activity or pupil response, could improve diag-
nostic accuracy further.

Gao et al44 explored a multi-task learning framework to iden-
tify ASD using resting-state functional magnetic resonance 
imaging (rs-fMRI) data. The study aimed to improve the accu-
racy of ASD detection by leveraging information from multiple 
datasets and tasks. Using a multi-task Transformer framework 
with an attention mechanism, the model was able to extract 
ASD-related features better, improving both feature represen-
tation and the generalization of predictions across different 
datasets. This approach outperformed traditional single-task 
methods and demonstrated the potential of ML to enhance 

clinical practice for ASD diagnosis, though challenges like data 
imbalance still need to be addressed.

All these studies illustrate the diverse approaches and sig-
nificant progress made in enhancing predictive outcomes for 
ASD diagnosis using AI, ML, and other advanced technolo-
gies. Enhanced predictive outcomes are crucial for ensuring 
that children receive early interventions that can significantly 
improve their quality of life and developmental prospects. 
Continued research into these technologies will be vital in over-
coming current challenges, such as data quality and algorithm 
bias, to ensure that AI-driven diagnostic tools are reliable and 
applicable in clinical settings.

SIMPLIFYING AUTISM SPECTRUM DISORDER 
DIAGNOSIS BY REDUCING ASSESSMENT STEPS AND 
TIME OF DIAGNOSIS

Traditional diagnostic methods for ASD, which rely heavily on 
behavioral assessments, are often time-consuming, subjec-
tive, and require expert clinicians. These innovations use data 
from brain activity, facial images, behavioral observations, and 
genetic markers to offer more accessible, efficient, and reliable 
diagnostic tools. Early diagnosis is crucial, and linked to better 
intervention outcomes, especially when conducted before age 3.

Among these advancements, Pal and Rubini37 developed an 
intelligent behavioral trait prediction system using the BERT 
(Bidirectional Encoder Representations from Transformers) 
model. This AI-driven tool analyzes text-based parental 

Table 3. Various Deep Learning Autism Spectrum Disorder Detection Modalities
Neuroimaging Assessment
Functional Magnetic Resonance Imaging (fMRI) • fMRI measures brain blood flow, providing insight into neural activity and 

connections across different brain regions
• fMRI aids in ASD detection using DL to examine brain activation patterns and 

neural network interactions
Functional near-infrared spectroscopy (fNIRS) • fNIRS measures brain activity by detecting changes in blood oxygenation 

levels in the brain
• AI models can identify atypical neural patterns associated with ASD by 

assessing hemodynamic responses in specific brain regions
Electroencephalography (EEG) • EEG captures brain signals

• Enabling DL models to identify ASD-related patterns in brain activity through 
electrodes

Electroretinography (ERG) • ERG records electrical responses of the retina to light stimuli
• Used in DL techniques to analyze retinal response patterns

Multimodal (Non-Neuroimaging) Assessment
Visual data • Visual data, such as facial expressions and home videos, provide valuable 

insights into the social and behavioral patterns of individuals
• Enabling DL models to automate the analysis of facial expressions, eye 

movement patterns, and behavioral interactions.
Motor function data • Evaluating physical movement patterns and detecting motor abnormalities

• DL models to analyze 3D kinematic data from walking patterns
Behavioral data • Behavioral data observes and assesses an individual’s behavior

• DL models identify ASD traits and patterns, improving accuracy and reliability 
through integration with other modalities

Microbiome data • Microbiome data for understanding gut-brain interactions
• DL algorithms to analyze gut microbial profiles

Genetic data • Genetic data in ASD detection enhances research, improving diagnosis and 
treatment strategies

• DL integration with neuroimaging and behavioral data

134



Turk Arch Pediatr 2025; 60(2): 126-140 Solek et al.

observations describing toddler behaviors, incorporating 
key features like attention response, emotional empathy, and 
repetitive behaviors. The model achieved 88% accuracy using 
the text-based early Autism Spectrum Disorder detection data-
set for toddlers (TASD), demonstrating its potential for efficient 
early screening.

Megerian et al12 introduced an AI-based medical device 
designed to aid primary care providers in diagnosing ASD in 
children aged 18-72 months. The device integrates three key 
data inputs: caregiver questionnaires, brief home videos, and 
healthcare provider assessments. Unlike traditional diagnos-
tic tools, which can be lengthy and cumbersome, this device 
uses a streamlined approach with shorter questionnaires and 
videos. This efficiency is especially beneficial in primary care 
settings, where time constraints often hinder comprehensive 
assessments. The AI system maintained consistent perfor-
mance across various demographic factors, including sex, 
race/ethnicity, income, and parental education, suggesting 
that the reduced assessment items did not introduce bias. This 
study demonstrates that even with fewer items, AI can still yield 
reliable diagnostic recommendations, ultimately enhancing 
diagnostic capacity and early intervention.

Rabie and Saleh40 aimed to create an AI tool for early ASD 
diagnosis using facial images, reducing the reliance on behav-
ioral assessments. The researchers applied ML algorithms, 
particularly CNN, to analyze facial features in children aged 
2-8 years, achieving an impressive 92.31% accuracy. This high 
accuracy suggests that AI-based facial image analysis could 
be a valuable addition to the diagnostic toolkit for ASD. The 
use of facial images offers several advantages over traditional 
methods, particularly in settings with limited access to expe-
rienced specialists. This approach could help prioritize cases 
requiring more detailed evaluation by enabling faster and 
more objective screenings. However, the researchers note that 
further studies with larger, more diverse datasets are neces-
sary to improve the model’s generalizability and robustness.

Tang et al42 explored the use of blood-based biomarkers 
combined with ML for early ASD detection. The researchers 
used advanced statistical techniques like LASSO regression 
to narrow down a large set of differentially expressed genes 
to just 21 key biomarkers. Utilizing these biomarkers, the team 
developed ML models that achieved high accuracy rates, 
with logistic regression reaching 86% accuracy and neural 
networks achieving 88% accuracy. The reduced number of 
biomarkers makes this approach more efficient and cost-
effective than traditional methods, which typically involve 
more extensive genetic testing. Furthermore, blood-based 
tests are non-invasive and could be especially appealing for 
young children, who may find behavioral assessments chal-
lenging. This study also demonstrated that fewer biomarkers 
can still lead to highly accurate predictions, opening the door 
to simpler and more accessible diagnostic tests. However, 
the researchers emphasize the need for further validation in 
larger, more diverse populations to confirm the tool’s reliabil-
ity and applicability.

Xu et al45 introduced a multilayer neural network called contin-
uous graph recurrent neural network (CGRNN), combining CNN 

and gated recurrent units (GRU) to analyze functional near-
infrared spectroscopy (fNIRS) signals to diagnose ASD. One of 
the key challenges in ASD diagnosis is the limited availability of 
large, labeled datasets for training ML models. The research-
ers implemented a sliding window technique to address this 
issue, dividing long-duration time-series data (480 seconds) 
into overlapping 7-second segments. This approach allowed 
the model to effectively capture relevant features despite the 
small sample size (25 children with ASD and 22 TD children). 
The results were promising, with the CGRNN model achieving 
92.2% accuracy, 85.0% sensitivity, and 99.4% specificity, sug-
gesting that even short-duration hemodynamic fluctuations 
from a single optical channel can provide valuable discrimi-
native information between ASD and TD children. Moreover, 
the study revealed that certain brain regions might be more 
indicative of ASD, which could help refine diagnostic processes. 
Interestingly, the study also found that total hemoglobin mea-
surements offered better discriminative power than oxygen-
ated or deoxygenated hemoglobin. These findings emphasize 
the potential for fNIRS as a non-invasive, efficient method for 
early ASD detection, and point toward the need for further 
research to optimize these approaches.

Pham et al48 developed a non-invasive, cost-effective diag-
nostic system for ASD using electroencephalogram (EEG) sig-
nals. Electroencephalogram is a well-established technique 
for monitoring brain activity, and the researchers focused on 
extracting just five key features from EEG data to distinguish 
between children with ASD and TD children. The resulting sys-
tem achieved an impressive 98.7% accuracy, demonstrating 
the potential for EEG to provide rapid and reliable ASD diag-
noses. This method has several advantages, including its non-
invasive nature and the ability to perform diagnostic testing 
quickly, potentially reducing wait times for ASD evaluations. 
While the study was limited by sample size and the manual 
nature of feature extraction, the authors propose that future 
research incorporating DL models and larger datasets could 
further enhance the system’s performance.

These studies highlight the growing potential of advanced 
technologies—ranging from neural networks and AI-based 
devices to biomarkers and EEG signals. By simplifying the 
diagnostic process, reducing the need for lengthy and inva-
sive assessments, and improving diagnostic accuracy, these 
approaches promise to increase the speed and accessibility 
of ASD detection, particularly in underserved areas. However, 
while the results are promising, further validation and research 
are necessary to refine these methods and ensure their reli-
ability in diverse clinical settings.

CLASSIFICATION BETWEEN DIFFERENT 
NEURODEVELOPMENTAL DISORDERS

Autism spectrum disorder is one of the most widely studied and 
diagnosed among NDDs. However, it shares several overlap-
ping features with other conditions, such as Attention-Deficit/
Hyperactivity Disorder, intellectual disabilities, and Pervasive 
Developmental Disorder-Not Otherwise Specified (PDD-
NOS). It is important to note that the neurological categori-
zation mentioned aligns with the DSM-IV framework, which 
has been updated in the DSM-V. Precise differentiation and 
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classification of these disorders are essential for implement-
ing targeted interventions and therapies, as the symptoms and 
severity can vary significantly. With the growing recognition of 
the complexity of these disorders, there has been a push for 
more sophisticated diagnostic methods that can differentiate 
ASD from other NDDs. Recent advancements in ML, neuro-
imaging, and biosignal analysis offer promising solutions for 
more accurate, efficient, and objective diagnoses, which are 
essential for early intervention and personalized treatment.

Choi et al25 employed a multiclass decision forest algorithm to 
classify children with different neurodevelopmental conditions 
using 1269 Korean ADI-R test data. The goal was to differen-
tiate between ASD, PDD-NOS, and no-diagnosis groups. By 
applying the decision forest model, the team found high accu-
racy in categorizing these groups, particularly as the number 
of decision trees increased from 1 to 8. The results showed that 
using 4 or 8 trees led to an accuracy of 81% in predicting PDD-
NOS, highlighting the model’s effectiveness in distinguishing 
between NDDs. The approach used in this study demonstrates 
the potential of ML techniques to handle complex data from 
neurodevelopmental assessments. By integrating multiple 
decision trees, the decision forest algorithm can process and 
classify various patterns in diagnostic data, making it an effi-
cient tool for recognizing subtle differences between disorders 
like ASD and PDD-NOS.

Meanwhile, Abdulhay et al47 focused on resting-state EEG data 
to differentiate ASD from neurotypical children. The study uti-
lized continuous wavelet transform (CWT) to analyze EEG data, 
revealing significant differences in neural discharge frequen-
cies and brain activity between children with ASD and neuro-
typical children. These differences were reflected in the CWT 
plots, which showed larger areas for ASD cases compared 
to neurotypical cases. The researchers applied an artificial 
neural network (ANN) classification method to the extracted 
features, achieving an impressive overall accuracy of 95.90%, 
with a sensitivity of 96.72% and specificity of 95.08%. The study 
included 122 participants (61 ASD and 61 neurotypical children), 
which strengthened the reliability of the results by addressing 
the limitations of previous studies with smaller samples. The 
main advantage of this EEG-based method is its simplicity and 
accessibility. Unlike fMRI or CT scans, EEG can be easily col-
lected and analyzed, making it suitable for routine clinical use. 
Additionally, EEG provides a more detailed view of brain activ-
ity by looking at both the timing and patterns of the signals, 
offering deeper insights into the brain functions involved in ASD 
and other NDDs.

Both studies highlight promising advancements in the classifi-
cation and diagnosis of NDDs. Choi et al’s decision forest model 
and Abdulhay et al’s EEG-based method represent two differ-
ent approaches to improving diagnostic accuracy. However, 
they shared a common goal: to provide more objective, acces-
sible, and accurate tools for distinguishing ASD from other 
conditions such as PDD-NOS and other NDDs, which was a 
diagnostic category in DSM-IV but has been superseded in the 
current DSM-V classification. While these methods have shown 
promising results, further validation is needed. The studies 
emphasize the importance of large, diverse sample sizes to 

ensure the generalizability of these approaches across various 
populations.

DETERMINING CRITICAL FACTORS OF AUTISM 
SPECTRUM DISORDER

Autism spectrum disorder is an NDD that impacts social inter-
action, communication, and behavior, with rising prevalence 
highlighting the need for early identification and intervention. 
Despite the complex and multifactorial nature of ASD, studies 
suggest both genetic and environmental factors contribute to 
its onset. Identifying critical risk factors is critical to improv-
ing screening and personalized interventions. Early diagnosis 
significantly improves outcomes for children with ASD, making 
research into potential predictors, including genetic, environ-
mental, and novel markers like gait abnormalities and brain 
activity, essential.

Several studies have identified key predictors for early ASD 
detection. Rahman et al27 identified critical factors for the 
early prediction of ASD by analyzing EMRs from a large 
cohort. The study found several maternal and paternal fac-
tors, such as parental age and medication use, were signifi-
cant predictors. This study highlights key predictors for ASD 
classification, which include previously proposed risk factors 
such as advanced parental age, medication use, and demo-
graphic characteristics like education level and socioeconomic 
status. However, it also suggests that these associations are 
not causative but may reflect underlying genetic predisposi-
tions or environmental influences that interact with genetic risk 
factors.

Ucuz and Cicek28 used an ANN to predict ASD by considering a 
range of prenatal, perinatal, and developmental factors. The 
study found that early developmental milestones—such as age 
of first words, head control, and sitting independently—were 
among the strongest predictors of ASD. Family history of autism 
and paternal age at the time of pregnancy also emerged as 
critical factors. This study underscores the importance of 
developmental milestones in predicting ASD risk and suggests 
that early developmental screenings could serve as valuable 
tools for early diagnosis. These milestones, such as when a 
child speaks their first words or achieves motor control, are 
often delayed in children with ASD. Early identification of these 
delays could help clinicians diagnose ASD at younger ages, 
allowing for early interventions that improve outcomes.

Hasan et al35 took a different approach by focusing on the gait 
patterns of children with ASD. Using 3-dimensional kinematic 
data, the researchers found that children with ASD exhibited 
specific gait abnormalities that could help differentiate them 
from TD children. These gait features, such as knee flexion dur-
ing foot contact, maximum ankle plantarflexion during stance, 
maximum ankle adduction during the gait cycle, and maximum 
ankle abduction during the gait cycle, were highly predictive 
of ASD. By applying ML to the kinematic data, the researchers 
achieved high classification accuracy (91.7%) in detecting gait 
abnormalities associated with ASD. This study demonstrates 
the potential of biomechanical analysis to identify motor-
related symptoms of ASD, which could be integrated into exist-
ing diagnostic protocols to aid in early detection.
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Olageuz-Gonzalez et al41 explored the potential of the gut 
microbiome as a biomarker for ASD. By analyzing microbiome 
data from two different countries, the researchers identified 
specific bacterial genera that were significantly associated with 
ASD. Notably, bacteria such as “Bacteroides,” “Lachnospira,” 
and “Ruminococcus” were found to play an important role in 
ASD classification. This research suggests that the gut-brain 
axis may be an important factor in ASD development. The find-
ings challenge conventional microbiome research, which typi-
cally focuses on the most abundant bacteria, showing that less 
abundant bacteria may also play a critical role in ASD. This 
study highlights the potential of microbiome analysis as a new 
diagnostic tool for ASD, but further research is needed to con-
firm these findings and explore their clinical applications.

Bi et al43 used fMRI data to develop an improved diagnostic 
method for ASD. By applying a novel ML technique called the 
“random neural network cluster,” the researchers achieved 
high classification accuracy (95%-100%) in differentiating 
individuals with ASD from TD children. This method identified 
specific brain regions, such as the supplementary motor area 
and fusiform gyrus, that showed abnormal activity in individu-
als with ASD. These brain regions have been previously impli-
cated in ASD, reinforcing the neurological basis of the disorder. 
The high classification accuracy of this method suggests that 
fMRI could become an important tool in the early and accu-
rate diagnosis of ASD, aiding in the development of targeted 
interventions.

These studies illustrate the growing potential of using advanced 
technologies like AI, ML, and brain imaging to uncover critical 
risk factors and improve early diagnosis of ASD. By analyzing 
diverse data sources, such as electronic health records (EHR), 
developmental milestones, gait patterns, microbiome compo-
sition, and brain activity, researchers are beginning to identify 
key factors that contribute to the development of ASD. While 
many of these studies have demonstrated promising results, 
the field is still in the early stages of validating these predic-
tive models and identifying causative risk factors. Continued 
research, including larger sample sizes and longitudinal stud-
ies, will be crucial for refining these tools and ensuring they can 
be effectively integrated into clinical practice.

REDUCING THE NUMBER OF FEATURES WITHOUT 
COMPROMISING ACCURACY

In many AI/ML/DL applications, especially in medical diagno-
sis, the crucial goal is the ability to reduce the number of fea-
tures in a model without sacrificing predictive accuracy. This 
process, often called “feature selection,” involves identifying 
and retaining only the most important variables that contribute 
meaningfully to the model’s predictions, while eliminating less 
informative or redundant features. Feature selection methods, 
such as mutual information, RF, and dimensionality reduction 
techniques like t-distributed Stochastic Neighbor Embedding 
(t-SNE), have been employed in various ASD studies to opti-
mize the diagnostic process. Below, we explore several studies 
that have applied feature reduction techniques to improve the 
efficiency and accuracy of ASD diagnosis.

Choi et al25 focused on optimizing ASD diagnosis by applying 
ML techniques to the ADI-R algorithm. Their study used mutual 

information methods to rank the importance of 78 diagnos-
tic items based on data collected from 539 verbal individuals 
over 48 months old. The analysis showed that the most impor-
tant features for ASD diagnosis were predominantly related to 
communication and social interaction, with seven of the top 10 
items coming from the communication domain, and three from 
reciprocal social interaction. To further streamline the diagno-
sis, the researchers selected only the top 5 ranked items from 
the list, which achieved exceptional results by reaching 100% 
specificity and 97.6% sensitivity for classifying ASD. These find-
ings highlight the potential for improving ASD diagnostic tools 
by focusing on a smaller set of highly predictive features. While 
the study demonstrated the promise of ML, the authors noted 
that their results were based on older DSM-IV criteria, and inte-
grating clinical and biological data in future iterations could 
lead to even more accurate and efficient screening methods.

Selvi et al29 sought to develop a practical tool for early ASD 
screening, particularly in areas with limited access to clinical 
specialists. They introduced the Indian Autism Grading Tool 
(IAGT), a mobile app designed to simplify the screening pro-
cess by using a 37-item questionnaire called the Indian Autism 
Parental Questionnaire (IAPQ), which assesses various devel-
opmental aspects, including social, language, and cognitive 
skills. The researchers applied ML algorithms to the IAPQ data 
to create an efficient classification model for ASD. They tested 
five algorithms, including DT, Gaussian Naive Bayes, and multi-
nomial logistic regression (MLR), with the MLR model achieving 
the highest accuracy at 97.85%. The IAGT app was developed 
to allow parents and caregivers to easily complete the ques-
tionnaire and receive immediate predictions of autism sever-
ity, which could be used to determine whether further clinical 
evaluation is necessary. One key advantage of this tool is its 
ability to maintain high predictive accuracy with a reduced 
set of 37 items. By focusing on the most relevant questions, the 
researchers demonstrated how ML could enhance diagnostic 
efficiency without compromising the quality of the results.

Awaji et al32 explored the potential of using facial feature anal-
ysis combined with ML algorithms to improve the accuracy and 
efficiency of ASD diagnosis. The researchers aimed to develop 
a hybrid system integrating CNN with traditional ML models 
to identify subtle facial features that might indicate ASD. This 
approach focuses on reducing the number of features derived 
from facial images without sacrificing the model’s ability to 
differentiate between ASD and TD individuals. They used pre-
trained CNN models, such as VGG16, ResNet101, and MobileNet, 
to extract complex features from facial images. These models 
effectively capture intricate, hierarchical patterns within raw 
image data. To optimize the analysis, they applied the t-SNE 
algorithm to reduce the dimensionality of the feature space, 
ensuring that only the most significant features were retained 
while eliminating less informative ones. By combining the power 
of DL for feature extraction with traditional ML algorithms like 
XGBoost and RF for classification, the researchers developed a 
robust system for ASD diagnosis that maintained high accuracy 
while reducing the computational complexity of the model. This 
hybrid approach highlights the potential for feature reduction 
techniques to improve diagnostic tools by focusing on the most 
relevant data points, such as facial features, which may pro-
vide valuable insights for clinicians in identifying ASD.
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Wang and Fu39 investigated the role of gut microbiota as a 
potential biomarker for ASD, utilizing ML to identify which 
microbial species could be used to predict the disorder. The 
researchers collected data from multiple cohorts across differ-
ent regions and ethnicities, integrating microbiome data into 
the analysis to identify any correlations between gut micro-
biota composition and ASD. To refine the dataset and improve 
predictive accuracy, the team applied an RF algorithm and 
an iterative feature selection process, specifically using the 
mean decrease accuracy method to assess the importance of 
each microbial species. This iterative approach enabled the 
researchers to reduce the number of features (microbial spe-
cies) in the dataset while ensuring that only the most informa-
tive species remained. The researchers repeated this process 
until further feature reductions did not improve the area under 
the receiver operating characteristic curve, indicating an opti-
mal set of features for predicting ASD. The study shows how 
ML can be applied to complex microbiome datasets to iden-
tify specific biomarkers for ASD, thus simplifying the diagnostic 
process without compromising accuracy.

The studies reviewed above demonstrate the powerful impact 
of feature reduction techniques in enhancing the efficiency and 
accuracy of ASD diagnosis. By reducing the number of features 
without compromising accuracy, clinicians can benefit from 
faster, more efficient diagnostic tools, which could ultimately 
lead to earlier identification and better-targeted interventions 
for children with ASD.

CHALLENGES AND LIMITATIONS

Limitations of AI in diagnosing ASD include data limitations, 
as models often rely on datasets that may not represent the 
diverse ASD population, leading to biased results. The com-
plexity of ASD, characterized by a wide spectrum of symptoms, 
poses challenges for AI in capturing all variations. Moreover, 
AI may lack the contextual understanding to interpret subtle 
social and behavioral cues crucial for diagnosis. There are 
also ethical concerns related to privacy, consent, and the 
“black box” nature of AI decisions. Implementing ASD diagnos-
tic tools requires careful consideration of ethical implications 
and proper consent from patients’ guardians. A collabora-
tive effort is essential to effectively integrate large-scale ASD 
patient data into bioinformatics systems for treatment and 
cure development. This collaboration should involve various 
experts, including medical professionals, bioinformaticians, 
computer scientists, bioethicists, and specialists from other rel-
evant fields.49

Limited integration with clinical expertise can result from AI 
tools being developed without sufficient clinician input, lead-
ing to over-reliance on technology.50 Additionally, many AI 
models lack extensive validation across diverse populations 
and settings, raising questions about their generalizabil-
ity. Developmental considerations are important; changes in 
ASD symptoms over time may not be adequately accounted 
for in AI models. Furthermore, integrating diverse data types 
(behavioral, genetic, neuroimaging) presents challenges for AI 
systems. A lack of longitudinal data also exists, as many mod-
els are based on cross-sectional data, missing critical devel-
opmental changes. Finally, regulatory and implementation 

challenges pose significant hurdles in integrating AI tools into 
clinical practice.

CONCLUSION

The integration of AI technologies in ASD diagnosis offers 
significant potential for improving diagnostic accuracy, effi-
ciency, and early detection. Artificial intelligence-driven meth-
ods, particularly ML and DL algorithms, have demonstrated 
high accuracy across various data modalities such as nomi-
nal, observational, laboratory, and neuroimaging data. These 
approaches provide several advantages, including improved 
diagnostic precision, reduced assessment time, more objective 
analysis, and enhanced predictive capabilities.

Furthermore, AI tools have the potential to significantly increase 
the accessibility of ASD screening, particularly in underserved 
areas where specialized resources may be limited. Looking 
ahead, a valuable research direction would involve applying 
various AI techniques, despite their heterogeneity, to a single, 
preferably large population. This approach would enable the 
verification and comparison of respective results, potentially 
leading to more potent and generalizable diagnostic models 
for ASD.

However, challenges such as data quality, privacy concerns, 
ethical issues, and the need for clinical integration remain. 
Further research is needed to improve the robustness of AI 
models, ensure data privacy, and develop guidelines for their 
use in clinical settings. A multidisciplinary approach combin-
ing AI with traditional diagnostic methods and clinical judg-
ment will be essential for effective ASD assessment. Continued 
advancements in AI technology, along with careful attention 
to ethical and practical considerations, will ultimately lead to 
more accurate, timely, and personalized interventions for indi-
viduals with ASD.
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Supplementary Table 1. Glossary Box13

Artificial intelligence (AI) Refers to the development of algorithms and computer systems capable of mimicking cognitive 
functions typically associated with human intelligence (including data analysis, pattern recognition, 
diagnostic reasoning, image interpretation, and natural language processing). It covers machine 
learning, deep learning and natural language processing under its umbrella.

Machine learning (ML) It is a subset of artificial intelligence that allows computers to learn from data. ML algorithms use 
statistical methods to improve at a specific task as they process more data.

Artificial neural network 
(ANN)

A computational model inspired by the human brain’s structure. It consists of connected nodes, or 
“neurons,” arranged in layers that process information by responding dynamically to inputs. This setup 
enables the network to learn complex patterns and relationships in data. ANNs are widely used for 
tasks like classification and regression and form the basis for advanced methods like deep learning, 
which uses many layers to capture detailed patterns automatically.

Convolutional neural network 
(CNN)

The type of ANN where the typical fully connected layers are replaced by convolutional operations 
using a set of trainable filters.

Multilayer perceptron (MLP) The type of ANN used in ML, consists of multiple layers of neurons (input, hidden, and output layers). 
MLPs are used to model complex relationships between inputs and outputs using non-linear activation 
functions.

Recurrent neural network 
(RNN)

Enables the modeling of temporal dynamics based on information received at previous time points by 
connecting higher and lower levels.

Gated recurrent unit (GRU) A type of RNN that is designed to handle sequential data. It uses gating units to control the flow of 
information, allowing it to capture long-term dependencies in data more efficiently than traditional 
RNNs.

Deep learning (DL) An advanced subfield of Machine Learning that uses neural networks with multiple layers, called deep 
neural networks. It’s especially effective for complex tasks like recognizing images and speech, 
allowing systems to understand detailed patterns in data automatically. This approach uses powerful 
computing and works well with large datasets to build more advanced and capable models.

Natural language processing 
(NLP)

A branch of AI that helps computers understand and work with human language. It enables machines 
to interpret, process, and generate language, making communicating easier for computers and 
people.

Bidirectional Encoder 
Representations from 
Transformers (BERT)

A transformer-based model designed to pre-train deep bidirectional representations by join 
conditioning on both left and right context in all layers. It’s a powerful model for natural language 
processing (NLP) tasks. ERT is used for tasks like question answering, language understanding, and 
text classification.

Regression algorithms Regression is used to model the relationship between variables, adjusting the model based on errors in 
its predictions to improve accuracy over time.

Linear discriminant analysis 
(LDA)

Projects a dataset of n-dimensional samples onto a latent subspace k (k n 1) while preserving 
class-discriminatory information

Quadratic discriminant 
analysis (QDA)

A variant of LDA that assumes each class has its own covariance matrix. It models the decision 
boundary between classes as a quadratic function instead of a linear one, making it more flexible in 
capturing the differences between classes.

Linear regression Relationships between variables are modeled by fitting a linear equation to observed data.
Least Absolute Shrinkage and 
Selection Operator (LASSO)

A linear regression technique that performs both variable selection and regularization. It involves 
adding a penalty term to the regression loss function, which helps to shrink some coefficients to zero, 
effectively selecting a simpler model.

Logistic regression Explains the relationship between one dependent binary variables and one or more independent 
variable regressing for the probability of a categorical outcome using a logistic function.

Clustering algorithms Clustering, like regression, describes the class of problems and methods.
AdaBoost The algorithm generates H hypotheses through an ensemble of learning algorithms. The output of the 

learning algorithms is combined into a weighted sum that represents the final output of the boosted 
classifier

Decision or Random Forest 
(RF)

An ensemble learning technique that aggregates predictions from multiple decision trees, with the 
final output determined by the majority vote, enhancing model accuracy and robustness.

k-nearest neighbor (KNN) A classification algorithm that labels new data points based on the majority class of their k closest 
neighbors in the feature space, typically uses Euclidean distance as a similarity measure.

Support vector machines 
(SVM)

A type of supervised machine learning algorithm used for classification tasks. They work by identifying 
the optimal hyperplane that separates different classes in a dataset while maximizing the margin, 
which is the distance between the hyperplane and the nearest data points from each class



 

Gradient boosting machine 
(GBM)

An ensemble ML technique that builds a model in a stage-wise manner. It builds trees sequentially, 
where each tree tries to correct the errors made by the previous one. Each subsequent tree is trained 
to predict the residuals (errors) of the prior trees.

Extreme gradient boosting 
(XGBoost)

An optimized version of gradient boosting that improves the efficiency, flexibility, and scalability of 
traditional gradient boosting machines (GBM). It uses a gradient descent algorithm to optimize a loss 
function and create accurate predictions.

Bayesian algorithms Statistical methods that apply Bayes’ Theorem to solve classification and regression problems by 
updating probabilities based on new evidence.

Genetic algorithm Optimization techniques inspired by natural selection, where a population of potential solutions 
evolves over generations through selection, crossover, and mutation processes to find the best solution 
to a given problem.


